Network clustering coefficient without degree-correlation biases.
نویسندگان
چکیده
The clustering coefficient quantifies how well connected are the neighbors of a vertex in a graph. In real networks it decreases with the vertex degree, which has been taken as a signature of the network hierarchical structure. Here we show that this signature of hierarchical structure is a consequence of degree-correlation biases in the clustering coefficient definition. We introduce a definition in which the degree-correlation biases are filtered out, and provide evidence that in real networks the clustering coefficient is constant or decays logarithmically with vertex degree.
منابع مشابه
A network with tunable clustering, degree correlation and degree distribution, and an epidemic thereon
A random network model which allows for tunable, quite general forms of clustering, degree correlation and degree distribution is defined. The model is an extension of the configuration model, in which stubs (half-edges) are paired to form a network. Clustering is obtained by forming small completely connected subgroups, and positive (negative) degree correlation is obtained by connecting a fra...
متن کامل0 Ju l 2 01 2 A network with tunable clustering , degree correlation and degree distribution , and an epidemic thereon
A random network model which allows for tunable, quite general forms of clustering, degree correlation and degree distribution is defined. The model is an extension of the configuration model, in which stubs (half-edges) are paired to form a network. Clustering is obtained by forming small completely connected subgroups, and positive (negative) degree correlation is obtained by connecting a fra...
متن کاملCorrelation of Eigenvector Centrality to Other Centrality Measures: Random, Small-world and Real-world Networks
In this paper, we thoroughly investigate correlations of eigenvector centrality to five centrality measures, including degree centrality, betweenness centrality, clustering coefficient centrality, closeness centrality, and farness centrality, of various types of network (random network, smallworld network, and real-world network). For each network, we compute those six centrality measures, from...
متن کاملDegree Correlations in Random Geometric Graphs
Spatially embedded networks are important in several disciplines. The prototypical spatial network we assume is the Random Geometric Graph, of which many properties are known. Here we present new results for the two-point degree correlation function in terms of the clustering coefficient of the graphs for two-dimensional space in particular, with extensions to arbitrary finite dimensions.
متن کاملAdaptive financial networks with static and dynamic thresholds
Based on the daily data of American and Chinese stock markets, the dynamic behavior of a financial network with static and dynamic thresholds is investigated. Compared with the static threshold, the dynamic threshold suppresses the large fluctuation induced by the cross-correlation of individual stock prices, and leads to a stable topological structure in the dynamic evolution. Long-range timec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 71 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2005